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1 State Space Generation Procedure

Our model represents the universe of possible social states as a 33 x 33 torus consisting of 1089
unique patches whose locations are specified by integer valued x and y coordinates in the interval
[0,32]. To represent the all things considered value of social states each patch is also associated
with a pheight that takes on a real numbered value determined by the stochastic terrain generation
algorithm described below. The toroidal structure of the state space is a standard assumption in
agent-based modeling, used to eliminate boundary effects and capture the idea that the state space
is unbounded. The dimensions, 33 x 33, were chosen so that the universe of possible social
states is large enough to exhibit a wide variety of “topographies” while still being computationally
tractable. The toroidal space can alternately be characterized as a 33 x 33 wrapped grid overlaid
with “hills.” Characterized this way, the height of the hills (and every other patch in the space)
represents the all-things-considered value of a state from the perspective of the agents exploring
the space, and agents traveling off one edge reappear on the opposite edge.

(It is natural, although not necessary, to think of the state space as a “landscape” or “terrain.”
We use this metaphor to simplify our exposition.)

1.1 Initial Parameters

The landscape generation process begins by setting the hillcount parameter, which determines
the maximum number of peaks to be distributed across the terrain. This value is exogenously
specified and controls the complexity of the resulting optimization landscape. Each simulation
trial generates a unique terrain configuration through the following stochastic process.

1.2 Baseline Terrain Initialization

Prior to hill generation, the algorithm establishes a baseline terrain by assigning each patch a small
initial height pheight;,;;i.; = 1+ €, where € ~ U(0,0.01). This baseline stabilizes the process of
calculating performance metrics by ensuring that the metrics can be easily normalized to the height
of any patch on the landscape.

1.3 Gaussian Hill Generation

Landscape construction then proceeds by iteratively generating Gaussian hills on the landscape,
where the number of hills is determined by the hillcount parameter described above. Visually, a
Gaussian hill has the shape of a classic bell curve. The size and location of these hills is stochas-
tically determined by the algorithm, and the hills can (and often do) overlap so that the ultimate
height of each patch on the landscape is determined by adding the contributions of each hill cov-
ering a patch to the initial height of the patch. More specifically, the hill generation procedure has
the following steps:

Step 1: Peak Location Assignment. For each hill i € {1,2,...,hillcount}, the algorithm
independently draws random coordinates:



hill-x ~ U (0,world-width)
hill-y ~ U (0,world-height)
These coordinates (hill-x, hill-y) serve as the center point for each Gaussian function.

Step 2: Hill Parameter Generation. Each hill is characterized by two stochastic parameters:

hill-amplitude ~ U (1,26)

hill-spread ~ U (1,5)

The amplitude parameter determines the height of the peak of each hill (and so its vertical
scale), while the spread parameter determines the spatial extent and steepness of the Gaussian
function by governing how height decreases as a function of distance from the peak. Together the
two parameters dictate how much the hill contributes to the heights of each patch encompassed by
the hill.

Step 3: Height Calculation. For each patch at coordinates (pxcor, pycor), the algorithm
calculates the height contribution from hill i using the Gaussian function:

distance;\ >
height_contribution; = amplitude; X exp (_0.5 y <w) > "
spread,;

where

distance; = \/(min(\hill—xi — pxcor|,32 — |hill-x; — pxcor|))? + (min(|hill-y; — pycor|,32 — |hill-y; — pycor]))?

which represents the Euclidean distance measured along the torus surface from the patch to the
center of the hill.

Step 4: Additive Height Assignment. The final height of each patch is computed as the
sum of contributions from all hills plus the baseline height:

hillcount
pheight = pheight;,sia + Z height _contribution_i 2)
i=1

This additive approach ensures that overlapping hills create higher peaks where their Gaussian
functions intersect, while maintaining the smooth character of the terrain. Specifically, hill con-
struction procedure ensures C* continuity across the terrain, with no discontinuous jumps between
adjacent patches. This property reflects the assumption that transitions from one social state to
another involve gradual rather than dramatic normative changes. (We take this as a starting point;
future research could relax this assumption.) Note, however, that the additive procedure for gen-
erating the landscape that iteratively layers hills on top of one another entails that the hillcount
parameter does not provide a measure of the number of peaks on a landscape. Instead, it provides
an upper bound on that number, while the actual number of peaks on a landscape is a function
of the location and size of the hills that are layered on the landscape. For instance, when hills
with relatively small amplitudes and/or large spreads are located near hills with relatively larger



amplitudes and smaller spreads, the contribution of the taller/steeper hill will typically swamp the
contribution of the shorter/broader hill so that the peak of the shorter/broader hill no longer stands
out on the landscape.

1.4 Global Optimum Enforcement

Finally, to guarantee the existence of a unique global maximum, the algorithm implements a post-
processing step. After all hills are generated, it identifies the patch (or patches) with the maximum
pheight using the max-one-of operation. If multiple patches share the maximum height the algo-
rithm selects one arbitrarily and increases its height by 1 unit. This ensures a single, well-defined
global optimum that serves as the “ideal” in the simulation framework.

1.5 Infeasibility Extension

In the infeasibility extension of the model, we operationalize the idea that there are some social
states that might be unrealizable, or that are otherwise inaccessible for agents, by removing some
patches from the landscape. The procedure operates as follows:

Step 1: Parameter Selection. First, specify a value for the parameter percent-infeasible that
determines the percentage of the landscape that will be rendered inaccessible, then calculate the
number of patches to be marked infeasible/removed from the landscape as follows: num-blocked =
(percent-in feasible/100) X total-patches

Step 2: Patch Assignment. Randomly select num-blocked patches using uniform sampling
without replacement

Step 3: Height Adjustment. Set the pheight of infeasible-patches to —10 and visually iden-
tify them by setting the color of the patch to black.!
2 Agent Movement

Below is a description of how our NetLLogo code operationalizes the movement rules for the four
agent types described in the text.

INote that the decision to reset the pheight of infeasible patches to —10 has no significance for the analysis or
interpretation of the model described here. This is because the agents in our model neither start on nor enter infeasible
patches (nor do the heights of those patches bear on their movement in other ways). The mechanism for changing the
pheight of infeasible patches was simply introduced to the algorithm to facilitate possible extensions of the model in
which infeasibility functionally impacts the value of a patch.



2.1 Ascenders

These are the agents that we think of as operationalizing the problem-solving approach to pursuing
progress. They implement a strategy that our NetLogo code labels stepwise-ascent that we describe
in the text as simply “Ascent”, which can be alternately characterized as myopic hill-climbing, .

Technical Details:
Search Space: All 8 neighboring patches

Exclusion Criteria: Ignore infeasible patches (i.e., set neighbor-patches neighbors with [infeasi-
ble = false])

Movement Rule: Identify the non-excluded neighboring patch with the best-fitness (max-one-of
neighbor-patches [pheight]). If that patch is better than the current-patch, move there (i.e., if
best-fitness > old-fitness).

Termination: If no neighboring patches are better than the current patch, stop.

2.2  ProxMax (Pros)

These are agents that operationalize a naive ideal-oriented approach to pursuing progress. They
implement a strategy we call “ProxMax” that directs the agent to myopically pursue the ideal by
moving directly towards the patch that is the global maximum with every step. Note that, in our
code and dataset, we used the label “Pros” to refer to this type of agent (hence, its appearance in
this appendix).2

Technical Details:

Search Space: Face ideal-patch (i.e., orient towards the ideal). Consider current-patch and patch-
ahead 1, where patch-ahead 1 is the neighboring patch that now lies directly ahead (i.e., directly
on the path to the ideal).

Movement Rule: If patch-here = ideal patch, stop. Otherwise, face ideal-patch, and if [infeasi-
ble] of patch-ahead 1 = false, then move forward to that patch. Repeat. If [infeasible] of patch-
ahead 1 = true, then stop. In other words, if current patch is not the ideal, and the neighboring
patch on path to the ideal is feasible, then move there.

Termination: Stop when the ideal-patch is reached, or when facing ideal-patch and patch-ahead
1 is infeasible.

2As we explain in the main text, we think this strategy is too myopic to fairly capture what ideal theorists have in
mind, so we provide minimal discussion of the strategy there. Because we collected data about the strategy and its
analysis is still useful as a point of comparison, though, we describe the strategy here and the data tables and summary
statistics included with this appendix include this data.



2.3 Flexible ProxMax (FPM or FlexPros)

These are the agents that operationalize a more flexible and intuitively plausible version of an ideal-
oriented strategy for pursuing progress. They implement a strategy that our NetL.ogo code labels
flexproxmax that we refer to in the text as “Flexible ProxMax” (FPM) that balances ideal orientation
with local optimization by continually orienting themselves towards the ideal and moving to the
best neighboring patch within an ideal-oriented cone. Note that, in our code and data, we used the
label “FlexPro” to refer to this type of agent (hence, its appearance in this appendix).

Technical Details:

Search Space: Face ideal-patch. Consider current-patch and the optionset of neighboring patches
that is defined by looking at patch-ahead I (where this is the neighboring patch that lies directly
on the path to the ideal), patch-left-and-ahead 45 1 (where this is the neighboring patch that lies
45 degrees to the left of the direct path to the ideal-patch), and patch-right-and-ahead 45 1 (where
this the neighboring patch that lies 45 degrees to the right of the direct path to the ideal—patch).3

Exclusion Criteria: Set optionset with [infeasible = false], (i.e., remove infeasible patches from
the optionset).

Movement Rule: If patch-here = ideal patch, stop. Otherwise, move-to max-one-of options [pheight],
(i.e., move to the (feasible) patch in the optionset that has the maximum pheight). Repeat. If the
optionset is empty (e.g., because all patches in the ideal-oriented cone are infeasible), stop.

Termination: Stop when the ideal-patch is reached, or when no feasible patches exist in optionset.

2.4 Random (Randos)

These are agents that use a stochastic exploration strategy with probabilistic termination. We
include as a baseline to show that some strategy is better than none. (We use the label “randos” in
our code and data to refer to this type of agent.)

Technical Details:

Search Space: All 8 neighboring patches

3Note that because the landscape consists of discrete patches, while orientation on the landscape can take on
continuous values within an agent’s 360-degree field of view, there will be cases where patch-ahead 1 will be identical
to one of patch-left-and-ahead 45 or patch-right-and-ahead 45. In these cases, the optionset will only contain two
patches. This aspect of how the strategy is defined has some implications for how often FlexPros climb down and
how often they get stuck short of the ideal, but it does not substantively impact the nature of the lottery that FlexPros
confront (nor does it substantially impact how they fare relative to Ascenders). Of course, the optionset that FlexPros
consider could have been defined differently (e.g., it could be defined to include all neighboring patches that lie within
the 90 degree ideal oriented cone, or to include the three neighboring patches closest to the ideal), but note that none
of those other methods of defining the optionset are obviously more plausible ways of operationalizing the notion of
flexible ideal oriented search.



Exclusion Criterion: Ignore infeasible patches (i.e., set neighbor-patches neighbors with [infea-
sible = false])

Movement Rule: If patch-here = maxpeak, stop. Otherwise, with 90% probability randomly
move to a patch that is uniformly drawn from the feasible neighbors, and with 10% probability
stop (i.e., if random 100 > 90 move-to one-of neighbor-patches).

Termination: Stop when max-peak is reached or when there are no feasible neighbors, otherwise
10% probability of stopping each step.

3 Data Collection

To analyze the model, data was collected using a BehaviorSpace simulation consisting of 70,000
trials. In each trial or “run,” a new landscape was generated using the procedure described above,
and 250 agents of each type were randomly placed at (feasible) patches on the landscape. 500
runs were performed for each combination of hillcount € {1,3,5,...,19} and percent-infeasible
€ {0,3,6,...,39}. The figures below provide a representative picture of what a landscape looks
like both before and after a run (in this case the landscape is parameterized with hillcount = 11
and percent-infeasible = 21). In the model visualization pheight is illustrated with colors ranging
from dark green for low lying areas to white for the highest areas. Infeasible patches are black.
Ascenders are blue, FlexPros are yellow, ProxMax agents are orange, and Randos are teal.

» ¥}

With Agents in Initial Locations After Agents Conclude Search

Figure 1. Sample Maps

For each run, the performance of agent-types was measured by collecting the mean values and



IQRs for the following metrics averaged across the 250 agents of each type. These metrics include
those we describe in the main text, as well as several others that we do not discuss there, but whose
values are recorded in the dataset included in our replication package. The list below includes in
bold the label of the relevant metric as it appears in the Netl.ogo code and data spreadsheet, along
with a brief description of what the metric describes, and in italics (where applicable) the label
we’ve given the metric in the main text.

max-peak-height The pheight of the global maximum patch on a landscape

optimum-percent — Percent Ideal (PI) Percent of agents reaching the global maximum (i.e. the
patch with pheight = max — peak — height)

end-below-start-pct — Percent Stop Below (PSB) Percent of agents that conclude search at a
patch with a lower height than the height at which it started (i.e. where pheight,,; < pheightay)

avg-endpoint-normalized — Expected Stop Value (ESV) Average pheight of agents at the end
of their search normalized by the max-peak-height

avg-pathlength — Expected Path Length Average number of steps taken by agents during their
search process

avg-pathvalue-normalized-max — Expected Path Value (EPAV) Average pheight of all patches
visited during an agent’s path normalized by the max-peak-height

avg-pathvalue-normalized-start Average pheight of all patches visited during an agent’s path
normalized by the pheighty,,+ of the patch at which the individual agent started their search

avg-increase-normalized Average increase in pheight from start to end position normalized by
each agent’s starting value (i.e., (pheight,,q — pheightsay )/ pheightsar)

avg-shortfall-normalized Average shortfall from the global maximum of the ending position nor-
malized by the max-peak-height (i.e., (max-peak-height — pheight,, ) /max-peak-height)

avg-climb-down-percent — Expected Percent Climb Down (EPCD) Average percentage of steps
in an agent’s path where the agent moved to a patch with a pheight than the previous patch it oc-
cupied

avg-path-below-start-percent — Expected Percent Path Sacrifice (EPPS) Average percentage of
steps in an agent’s path where the agent was at a patch with lower height than its starting position
(i.e., yizend pheight; | < pheight;)

i=start
startmean Average pheight,+ of agents on a landscape
start-norm Average pheight,s of agents on a landscape normalized by the max-peak-height

max-pathlength Maximum number of steps taken by any agent of a given type for a given simu-
lation run



As we indicated above, in addition to reporting the mean value for each of the performance
metrics just described, we also report the inter-quartile range (IQR) of those metrics (where ap-
plicable)4 for the 250 agents of each type on a given landscape. This provides a measure of the
within-run variability of the metrics. We chose to report IQRs rather than alternative measures
of variation, such as standard deviation, because many of the landscapes generate data that is not
normally distributed and that is often censored by the normalized metrics. Because most of the
metrics are normalized the IQRs are also relatively easy to interpret (e.g. an IQR of .3 indicates
that for the middle 50% of agents the metric in question ranges over 30% of the possible values
it can take on). In addition to the within-run IQRs, our summary statistics tables also report the
average of IQRs across runs. This provides a measure of the average within-run variability for
each metric under the specified landscape parameters.

4 Summary Statistics and Plots

This section presents box-and-whisker plots to illustrate how agents performance with respect to
various metrics depends on the hillcount and in feasibility parameters.

4.1 Baseline Experiment
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Figure 2. Ascender Percent-ldeal interacted with hillcount

4We do not report IQRs for Percent Ideal or Percent Stop Below because these metrics simply report the percentage
of agents in a given run that respectively reach the ideal or stop below their starting point. The box-plots for these
metrics that are presented below illustrate the between-run IQR for these metrics.
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Figure 3. Ascender Expected Stop Value interacted with hillcount
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Figure 4. Percent Climb Down of FPM agents interacted with hillcount

10



FPM Path Percent Sacrifice
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Figure 5. Percent Path Sacrifice of FPM agents interacted with hillcount

4.2 Infeasibility Extension

Percent Ideal: Ascenders vs FlexPros
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Figure 6. Percent-ldeal for Ascender and FlexPro agents interacted with
percent-infeasible
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Figure 7. Expected Stop Value for Ascenders and FlexPros interacted with
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Figure 9. Percent Path Sacrifice of FlexPro interacted with percent-infeasible

4.3 FlexPro vs. ProxMax Comparison

Percent Ideal: ProxMax vs FlexPro
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Figure 10. Percent Ideal of ProxMax and FlexPro agents across infeasibility
levels
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End Below Start Percent: ProxMax vs FlexPro
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Figure 11. Percent Stop Below of ProxMax and FlexPro agents across
infeasibiilty levels

5 Representative Paths

In Section 4 of the main text, we suggest that we can think of the two strategies we examine
as lotteries, using Figures 1 and 2 to make this idea concrete. Each figure plots a sample of
100 randomly selected paths for each of our two strategies, Ascend and FPM. In this section, we
discuss our sampling procedure and the construction of the “representative” or “average” paths,
and compare the sample to the full population.

The first step in constructing our sample was to randomly select four pairs of parameter spec-
ifications from the middle ranges of our hillcount and percent-infeasible variables. Specifically,
we randomly drew four pairs from the product set {5,7,9,11,13} x {9,12,15,18,21,24}, which
yielded the pairs (7,12), (5,15), (9,21), and (11,9) (the hillcount is the first number in each pair).
Then, for each pair, we ran a trial with 250 agents per type and collected the path data (the num-
ber of steps and the patch value at each step) for 25 randomly selected agents per type. After
collecting the data, we normalized the patch values to be percentages of the ideal value for each
trial, following our procedure in the full analysis. We then calculated the performance averages for
the two samples to check how they compared to the performance averages for the full population.
These comparisons are presented in Tables 1 and 2. Our samples do not perfectly represent the
full populations of the two types, as the tables show. But they’re not wildly divergent either, so we
believe they are useful as illustrations.

Figures 1 and 2 in the main text plot the (normalized) paths for each agent in our samples. We
split these into two subgroups, Success Paths (those that reach the ideal) and Failure Paths (those
that do not reach the ideal); we further subdivide the FPM Success Paths into “Efficient” Success
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Statistic Successes Failures Combined Full Pop.

Expected Length 8.97 8.77 8.83 6.31
Percent Ideal 1.00 0.00 0.30 0.31
Percent Stop Below 0.00 0.00 0.00 0.00
Expected Stop Value 1.00 0.76 0.83 0.70
Exp. Percent Climb Down 0.00 0.00 0.00 0.00
Exp. Percent Path Sacrifice 0.00 0.00 0.00 0.00
Exp. Path Average Value 0.68 0.51 0.56 0.46
Average Start Value 0.35 0.26 0.29 0.24
Sample size (n) 30 70 100 16.25 mil

Table 1. Statistical Comparison of Ascend Dataset Subgroups

Statistic Successes Failures Combined Full Pop.
Expected Length 14.38 9.14 13.23 10.64
Percent Ideal 1.00 0.00 0.78 0.67
Percent Stop Below 0.00 0.14 0.03 0.06
Expected Stop Value 1.00 0.43 0.88 0.79
Exp. Percent Climb Down 0.22 0.33 0.24 0.19
Exp. Percent Path Sacrifice 0.21 0.21 0.21 0.15
Exp. Path Average Value 0.51 0.32 0.47 0.43
Average Start Value 0.29 0.26 0.28 0.24
Sample size (n) 78 22 100 16.25 mil

Table 2. Statistical Comparison of FPM Dataset Subgroups

Paths (those that have 3 or fewer downward steps) and “Costly” Success Paths (those with more
than 3 downward steps). For each of these subgroups, we used Claude Al (model: Sonnet 4.5,
https://claude.ai) to construct a “representative” or “average” path from our sample data. These
depict the central performance tendencies for a subgroup in a single illustrative path: they start at
the average starting point for the subgroup, they take the average number of steps, they take the
average number of downward steps and average number of steps below the starting point, and the
average of their path values is equal to the Expected PAV for the subgroup.

Figures 1 and 2 offer an instructive way of visualizing what we mean when we characterize the
two strategies we consider as embodying distinct lotteries. As we say in the text, FPM consists of
a lottery between efficient success, costly success, and failure, while Ascent consists of a lottery
between efficient success and (non-costly) failure.” What these figures do not illustrate is how the

S Failure for Ascenders is “non-costly” in the sense that, although they fail to reach the ideal, they never step down,
nor do they spend time below their starting point. There are also instances in which FlexPros fail and the failure paths
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structure of these lotteries depends on the structure of the landscape an agent finds herself in, and
the analysis of our simulations also allows us to say something about that. In general, whether
the FPM strategy results in efficient success, costly success, or failure depends on where in a
landscape the agent begins her search (and we can say something similar for agents implementing
the Ascend strategy). How likely an FPM agent is to start her search from a patch that will lead
to efficient success as opposed to costly success or failure varies significantly from landscape to
landscape, though. In fact, there are landscapes where FlexPros will have efficient success from
most starting locations, others where costly success is most likely, and still others where FlexPros
will fail from a majority of starting locations. As we emphasize in the text, an advantage of the
kind of computational modeling we describe here is that it allows us to analyze the extent of this
variation.

To illustrate this point concretely, we present maps of three different landscapes along with
graphs illustrating the paths taken by 25 Ascenders and 25 FlexPros placed on those maps at
random locations. Each landscape was generated with a hillcount = 11 and percent-infeasible
= 21. In the maps the pheight of patches is depicted visually (with white representing the highest-
valued patches, dark green the lowest-valued patches, and black the infeasible patches). Ascenders
are blue, FlexPros are yellow. As an additional point of comparison, the path graphs also include
an average representative path that was constructed using the mean normalized start value and
expected path length, expected stop value, expected path value, expected climb down percent, and
expected path percent sacrifice that were calculated for the 500 complete runs of our simulations
with hillcount = 11 and percent-infeasible = 21. As the path graphs illustrate, the first map lends
itself to efficient success for FPM, while the second makes costly success more likely, and the third
makes failure more likely.

Two further observations are warranted here. First, landscapes where implementing the FPM
strategy is likely to result in costly success also tend to have relatively higher failure rates for
agents implementing Ascent. This is because the landscape features that explain costly success
for FlexPros — namely, the existence of many hills that are geographically distinct such that there
are valleys between them — also explain failure for Ascenders. In other words, Ascenders tend
to fail when they terminate search at a local optimum, whereas, for FlexPros, costly success is
explained by starting on (or having to navigate along and around) small hills on the way to the
global optimum. Note, however, that whether landscapes with high failure rates for FlexPros
tend to also have relatively higher failure rates for Ascenders is harder to say because, unlike
costly success, failure for FlexPros is driven by something— namely the presence of clusters of
infeasible patches — that has relatively less impact on Ascenders. The second thing to note is that
it can be hard to distinguish landscape types simply by visually inspecting them. We take it that this
latter fact, especially when combined with the fact that we’re not generally in a position to know
what type of landscape we find ourselves in, provides further reason to think that computational
modeling can lend useful insight to this debate.

are non-costly in this way, but notice that FPM failures are typically also accompanied by costly steps down, and, in
any case, from an analytical standpoint the contrasts between efficient success, costly success, and failure is starker
than the contrast between costly and non-costly failure.
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Figure 12. Landscape that favors efficient success for FlexPros.
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normalized p-height

Figure 13. Landscape that favors costly success for FlexPros.
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Figure 14. Landscape that favors failures for FlexPros.

FlexPros on a Failure Prone Landscape

0.8

0.6

normalized p-height

— Average

02 — Efficient Success
— Failure
OO 2 4 6 8§ 10 12 14 16 18 20 22 24 26

28

19

normalized p-height

Ascenders on a Failure Prone Landscape

— Average
— Success
— Failure
| | | | | | I I
12 14 16 18 20 22 24 26 28
steps



6 Alternative Landscapes

To confirm that the results our characterization of the trade-offs is robust to alternative ways of
generating landscapes and characterizing the state-space, we evaluated numerous ways of parame-
terizing the landscape generation algorithm. In particular, we ran simulations with different values
for the hill-amplitude and hill-spread parameters that determine how steep hills are and how much
of the landscape they cover. We also considered various ways of distributing infeasible patches on
the landscape, e.g., methods that prevented patches close to peaks from being infeasible, or meth-
ods that clustered infeasible patches. None of these variations had a significant qualitative impact
on the results we report.

In addition to the alternatives described above we also considered two more fundamental dif-
ferences in ways of generating and conceptualizing the landscape. One such change (mentioned in
fn. 24 of the main text) involved guaranteeing the existence of a gradient on the landscape. To do
this the landscape generation algorithm was modified so that the Gaussian hill generation process
would begin by creating an initial hill with:

base — amplitude ~ U (6,20) and base — spread = 16.

These parameters guarantee that the hill makes a meaningful contribution to the pheight of
every patch on the landscape. In our 33 x 33 landscape the farthest any two patches can ever
be from one another is approximately 23 units away, and with a spread parameter of 16 the base
hill contributes approximately 25% of its base-amplitude to the pheight of such patches. Tables
3 and 4 provide the summary statistics for 70,000 runs of a BehaviorSpace simulation of such a
model using the same parameter sweeps as the simulation discussed in the main text. Landscapes
with gradients improve the performance of both Ascenders and FlexPros, with both strategies
significantly improving their expected stop values and expected path values, and FlexPros climbing
down significantly less often. Overall, however, the trade-offs between the two strategies is similar
to what we found for the model discussed in the main text.

The second substantively different type of landscape we considered was an unwrapped grid.
This landscape was parameterized in the same way as the baseline model, but the edges of the
landscape were not wrapped, creating a 33 x 33 grid with 1089 patches where the maximum
distance between two patches was approximately 47 units. Once again, the performance of Ascen-
ders relative to FlexPros remains consistent with the results reported for the model discussed in the
main text, with both strategies faring slightly worse than they do in the wrapped landscape, The
only noteworthy difference is that the pathlength of FlexPros increases significantly in the bounded
landscape. See Tables 5 and 6 for summary statistics describing a 70,000 run BehaviorSpace sim-
ulation (using the same parameter sweeps).
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Statistic Ascend ProxMax FlexPro Random

Optimum Percent 0.42 1.00 1.00 0.01
Endpoint Normalized 0.91 1.00 1.00 0.48
(0.05) (0.00) (0.00) (0.15)
Path Length 7.77 12.52 13.44 8.94
(5.83) (6.85) (8.49) (10.39)
Path Value Normalized Max 0.64 0.63 0.65 0.48
(0.10) (0.10) (0.10) (0.15)
Path Value Normalized Start 1.83 1.83 1.83 1.16
(0.82) (0.79) (0.80) (0.67)
Increase Normalized 091 1.60 1.54 0.00
(0.83) (0.88) (0.93) (0.12)
Shortfall Normalized 0.06 0.00 0.00 0.58
(0.05) (0.00) (0.00) (0.16)
Climb Down Percent 0.00 0.06 0.06 0.45
(0.00) 0.19) (0.16) (0.34)
Path Below Start Percent 0.00 0.06 0.06 043
(0.00) (0.18) (0.09) (0.82)
End Below Start Pct 0.00 0.00 0.00 0.43
Max Peak 48.83 — — —

We report interquartile ranges in parentheses where available.
Table 3. Summary Statistics for Baseline Experiment on Gradient Landscape
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Statistic Ascend ProxMax FlexPro Random

Optimum Percent 0.36 0.22 0.67 0.01
Endpoint Normalized 0.85 0.62 0.92 0.48
(0.07) (0.26) (0.04) (0.16)
Path Length 7.37 4.44 10.62 8.93
(5.90) (5.24) 8.77)  (10.38)
Path Value Normalized Max 0.63 0.53 0.61 0.48
(0.11) (0.22) (0.13) (0.15)
Path Value Normalized Start 1.73 1.33 1.66 1.15
(0.82) (0.75) (0.81) (0.68)
Increase Normalized 0.88 0.22 1.03 0.00
(0.85) (0.32) (1.00) 0.1
Shortfall Normalized 0.08 0.38 0.05 0.58
(0.08) (0.26) (0.04) (0.16)
Climb Down Percent 0.00 0.06 0.06 0.45
(0.00) (0.22) 0.21) (0.33)
Path Below Start Percent 0.00 0.07 0.06 0.42
(0.00) (0.27) (0.13) (0.80)
End Below Start Pct 0.00 0.15 0.06 0.43
Max Peak 48.45 — — —

We report interquartile ranges in parentheses where available.
Table 4. Summary Statistics for Infeasibility Extension on Gradient Landscape
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Statistic

Ascend ProxMax FlexPro Random

Optimum Percent
Endpoint Normalized

Path Length

Path Value Normalized Max
Path Value Normalized Start
Increase Normalized
Shortfall Normalized

Climb Down Percent

Path Below Start Percent

End Below Start Pct
Max Peak

0.28
0.68
(0.28)
6.21
(5.47)
0.43
(0.30)
5.08
(4.24)
5.78
(4.28)
0.35
(0.28)
0.00
(0.00)
0.00
(0.00)
0.00
39.12

1.00
1.00
(0.00)
16.77

(11.69)

0.45
(0.13)
5.43
(5.63)
8.29
6.91)
0.00
(0.00)
0.09
(0.20)
0.09
0.21)
0.00

1.00
1.00
(0.00)
18.55

(14.56)

0.49
(0.11)
5.61
(6.08)
8.80
(6.64)
0.00
(0.00)
0.12
(0.26)
0.07
(0.10)
0.00

0.01
0.14
0.11)
8.93
(10.40)
0.13
0.11)
2.35
(0.80)
-0.02
(0.10)
0.79
(0.10)
0.45
(0.33)
0.43
(0.79)
0.42

We report interquartile ranges in parentheses where available.

Table 5. Summary Statistics for Baseline Experiment on Landscape w/ Edges
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Statistic

Ascend ProxMax

FlexPro Random

Optimum Percent
Endpoint Normalized

Path Length

Path Value Normalized Max
Path Value Normalized Start
Increase Normalized
Shortfall Normalized

Climb Down Percent

Path Below Start Percent

End Below Start Pct
Max Peak

0.24 0.18
0.64 0.42
(0.34) (0.31)
5.85 4.83
(5.39) (5.72)
0.41 0.23
(0.29) (0.16)
4.94 3.35
(4.07) (2.09)
5.53 1.93
4.11) (1.27)
0.42 0.65
(0.34) (0.31)
0.00 0.12
(0.00) (0.26)
0.00 0.11
(0.00) (0.22)
0.00 0.17

37.75 —

0.62 0.01
0.88 0.14
(0.08) (0.10)
13.48 8.92
(12.63) (10.38)
0.41 0.13
(0.18) (0.11)
4.90 2.45
(5.15) (0.75)
6.51 -0.02
(6.78) (0.09)
0.08 0.78
(0.07) (0.10)
0.14 0.45
(0.33) (0.31)
0.08 0.42
(0.15) (0.78)
0.07 0.42

We report interquartile ranges in parentheses where available.
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Table 6. Summary Statistics for Infeasibility Extension on Landscape w/ Edges



	State Space Generation Procedure
	Agent Movement
	Data Collection
	Summary Statistics and Plots
	Representative Paths
	Alternative Landscapes

